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Abstract — For the purpose of stabilization of the three-
dimensional eXtended Boundary Node Method (X-BNM), a new
algorithm for evaluating influence coefficients has been proposed.
Numerical experiments show that although the conventional
algorithm cannot be employed in problems with a relatively small
number of nodes, the proposed one is applicable to those with
any number of nodes. However, the computational cost of the
proposed algorithm slightly increases as compared with that of
the conventional one. In addition, the proposed algorithm shows
almost the same accuracy as the conventional one.

I. Introduction
Domain-type meshless methods such as Element-Free

Galerkin Method (EFGM) have been applied to electromag-
netic problems and have produced a lot of attractive results [1],
[2]. Alternatively, boundary-type meshless methods such as
Boundary-Node Method (BNM) [3] and Boundary Radial
Point Interpolation Method (BRPIM) have also been applied
to electromagnetic problems [4]. In BNM and BRPIM, the
boundary surface must be divided into a set of integration
cells to evaluate surface integrals. In this sense, these methods
still have a concept of boundary elements partly.

To remove the integration cells completely, three-
dimensional (3D) BNM has been recently reformulated. The
reformulated method is called the eXtended Boundary-Node
Method (X-BNM) [5]. In this method, the solution of nonlinear
systems is indispensable for evaluating influence coefficients.
However, solutions of the nonlinear systems sometimes do not
converge to appropriate ranges for the case where an integral
domain is a complicated shape. The purpose of this study is
to propose a new algorithm for stable evaluation of influence
coefficients for the X-BNM.

II. Influence Coefficients
If the X-BNM is applied to a 3D Laplace problem, the

influence coefficients, Gi j and Hi j(i, j = 1, 2, . . . ,N), can be
written as

Gi j ≡
∫

S j

w∗(x, xi)ϕ j(x) dS (x), (1)

Hi j ≡
∫

S j

∂w∗

∂n
(x, xi)ϕ j(x) dS (x) +

ϕ j(xi)Ωi

4π
, (2)

where w∗(x, xi) ≡ (4π|x− xi|)−1, and S j is a part of the bound-
ary surface ∂V contained in a sphere of radius R and center
x j. In addition, ϕ j(x) denotes a shape function corresponding
to the j-th boundary node x j ( j = 1, 2, . . . ,N). Here, N is the
number of boundary nodes and Ωi is a solid angle on xi.

III. Evaluation of Influence Coefficients

In the X-BNM, a boundary surface is assumed as an implicit
surface f (x) = 0 and the shape function is assumed to
have a support of radius R. Under the assumption, influence
coefficients can be written in the form,

I =
∫

S
F dS . (3)

Here, S denotes a part of the implicit surface Π contained in a
sphere of radius R and center y. Different coordinates are used
for the numerical integration of (3), depending on whether S
contains a singularity z of F(x) or not [5].

For the case where S contains a singularity z, we use the
3D polar coordinate (ρ∗, θ∗, φ∗) whose origin coincides with
the singularity z. In addition, we employ a local Cartesian
coordinate system ⟨z : e∗x, e∗y, e∗z⟩ illustrated in Fig. 1(a). By
using the system, arbitrary points x∗ are expressed as x∗ =
z+ρ∗(sin θ∗ cosφ∗e∗x+sin θ∗ sinφ∗e∗y+cos θ∗e∗z ) ≡ g∗(ρ∗, θ∗, φ∗).
Note that, on S , θ∗ is a function of ρ∗ and φ∗, i.e., θ∗ =
θ∗(ρ∗, φ∗). This can be easily proved by using the implicit func-
tion theorem. The function θ∗(ρ∗, φ∗) is determined by solving
a nonlinear equation, f (g∗(ρ∗, θ∗, φ∗)) = 0. The vector equation
in the integral domain S is given by x∗ = g∗(ρ∗, θ∗(ρ∗, φ∗), φ∗)
(0 ≤ ρ∗ ≤ R∗(φ∗), 0 ≤ φ∗ < 2π). Using the vector equation, the
integration (3) can be rewritten as follows:

I =
∫ 2π

0
dφ∗
∫ R∗(φ∗)

0
dρ∗G∗(ρ∗, φ∗), (4)

where

G∗(ρ∗, φ∗) ≡ ρ∗F(g∗)
√

[(θ∗ρ∗ρ∗)2 + 1] sin2 θ∗ + (θ∗φ∗)2. (5)

Note that the equation ρ∗ = R∗(φ∗) representing the edge of S
is determined by solving the following nonlinear systems:

σ∗1(ρ∗, θ∗) ≡ f (g∗(ρ∗, θ∗, φ∗)) = 0, (6)
σ∗2(ρ∗, θ∗) ≡ |g∗(ρ∗, θ∗, φ∗) − y|2 − R2 = 0. (7)

In the numerical evaluation of (4), the trapezoid formula
and the Gauss-Legendre quadrature are applied to the φ∗- and
ρ∗-directions, respectively. Throughout this paper, Nt and Ng
denote the number of integration points for the trapezoid for-
mula and that for the Gauss-Legendre quadrature, respectively.
For solving the nonlinear systems (6) and (7), the Newton
method is adopted. The concrete procedures for solving (6)
and (7) are shown in the following pseudo code. In this code,
ρ∗m and φ∗m are defined by ρ∗m = R∗(φ∗m) and φ∗m = (m − 1)∆φ∗

(m = 1, 2, . . . ,Nt) where ∆φ∗ = 2π/Nt.
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Fig. 1. (a) A local Cartesian coordinate system for the case where S
contains a singularity z of F(x). (b) A local Cartesian coordinate system
for the proposed algorithm for determination of R∗(φ∗).

Initial solutions (ρ∗0, θ
∗
0) are set;

for(m = 1; m ≤ Nt; ++m){
(ρ∗m, θ

∗
m) = Newton2D(ρ∗m−1, θ

∗
m−1, φ

∗
m,∆φ

∗);
}
Newton2D(ρ∗ini, θ

∗
ini, φ

∗
const, ∆φ

∗){
(ρ∗, θ∗) are determined by solving (6) and (7) with
initial solutions (ρ∗ini, θ

∗
ini) on the assumption φ∗=φ∗const;

if((ρ∗ < 0 || ρ∗ > 2R) || (θ∗ < 0 || θ∗ > π)){
φ̂∗ = φ∗const − ∆φ∗/2;
(ρ∗, θ∗) = Newton2D(ρ∗ini, θ

∗
ini, φ̂

∗, ∆φ∗/2);
}
return (ρ∗, θ∗);
}

IV. Stabilization
In the above pseudo code, the function “Newton2D” is

recursively called until solutions (ρ∗, θ∗) simultaneously con-
verge to appropriate ranges that are 0 ≤ ρ∗ ≤ 2R, 0 ≤ θ∗ ≤ π.
Unfortunately, for the case where an integral domain S is a
complicated shape, the recursive process is not finished. For
this case, this process is permanently repeated because the
approximate solutions (ρ∗, θ∗) fall into inappropriate ranges.

For the purpose of stable evaluation of influence coefficients,
we propose a new algorithm for determining ρ∗ = R∗(φ∗).
In this algorithm, we employ a local Cartesian coordinate
system ⟨y : e′x, e′y, e′z⟩ illustrated in Fig. 1(b). By using
the coordinate system, arbitrary points x are expressed as
x = y+ρ(sin θ cosφ e′x+sin θ sinφ e′y+cos θ e′z) ≡ g(ρ, θ, φ). In
this coordinate system, a length between y and the edge of S
is always R. On the edge of S , θ can be determined by solving
a nonlinear system f (g(R, θ, φ)) = 0 with φ = constant. There-
fore we obtain R∗(φ∗) = |g(R, θ, φ) − z| (see Fig. 1(b)). Note
that φ∗ is not determined. For determining φ∗, x = g(R, θ, φ)
is represented in the coordinate system ⟨z : e∗x, e∗y, e∗z⟩ as
x∗ = (e∗x⊗e∗x+e∗y⊗e∗y+e∗z⊗e∗z )·(x− z). By using the components
of x∗, φ∗ is determined as φ∗ = tan−1(y∗/x∗) (0 ≤ φ∗ < 2π),
where x∗ ≡ (x − z) · e∗x and y∗ ≡ (x − z) · e∗y.

V. Numerical Experiments
In this section, the performance of the proposed algorithm

is compared with that of the conventional algorithm. To this
end, the X-BNM with the proposed algorithm (new X-BNM)
and the X-BNM with the conventional algorithm (conventional
X-BNM) are applied to a 3D Laplace problem. A boundary

Fig. 2. Relation between the number N of nodes and the relative errors.

shape is assumed as f (x) = x2 + y2/4 + z2/36 − 1 = 0. The
boundary condition is chosen so that the analytic solution may
be u = 2r̄3P1

3(cos θ̄) cos φ̄. Here, (r̄, θ̄, φ̄) is a usual 3D polar
coordinates and P1

3(x) is the associated Legendre function. In
addition, Dirichlet and Neumann conditions are assumed on
given boundary nodes xk with zk ≥ 0 and those with zk < 0,
respectively. Moreover, the numbers of integration points are
assumed as follows: Nt = 11,Ng = 5 for z < S and Nt =

55,Ng = 5 for z ∈ S .
Let us investigate the accuracy of the new X-BNM and

that of the conventional X-BNM. The relative error for the
new X-BNM is determined as a function of the number N
of nodes and are depicted in Fig. 2. Note that, in Fig. 2, the
relative error for the conventional X-BNM is shown only for
N ≥ 3302. This is because the conventional X-BNM cannot
obtain numerical solutions for N < 3302. Therefore stability
of the new X-BNM is better than that of the conventional
X-BNM. In addition, there is no obvious difference between
accuracy of the new X-BNM and that of the conventional X-
BNM for the case with N ≥ 3302.

On the other hand, in N = 9590, computational times of new
and conventional X-BNMs for determining all influence coef-
ficients are about 252.2(s) and 210.0(s), respectively. Hence,
the computational cost of the new X-BNM slightly increases
as compared with that of the conventional X-BNM.
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